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Abstract. We point out geometric upper and lower bounds on the masses of bosonic and fermionic Kaluza–
Klein excitations in the context of theories with large extra dimensions. The characteristic compactification
length scale is set by the diameter of the internal manifold. Based on geometrical and topological consid-
erations, we find that certain choices of compactification manifolds are more favored for phenomenological
purposes.

1 Introduction and summary

In the recent past, there has been paid much attention to
models with large extra dimensions. The surge in activity
surrounding this idea owes its origin to the belief that the
existence of extra dimensions (beyond four) seems to be a
crucial ingredient for the unification of gravity with gauge
forces. The initial goal of taking a large radius, r �M−1

P ,
in compactification schemes is to weaken the hierarchy
between the electroweak scale and the four-dimensional
gravity scale, MP. The idea is that the matter content of
the standard model of elementary particles (SM) is con-
fined to (3 + 1) dimensions, as suggested by [1–4], while
gravity lives in the whole D-dimensional space (D > 4).
Upon compactification, the hierarchy problem is solved
by lowering the fundamental scale of gravity, M∗, down
to TeV through a model-dependent relation between M∗
and MP. The compactification mechanisms suggested so
far can be classified into two broad categories: models with
the tensor product of our four-dimensional world with the
internal space [2,3] (in line with the original Kaluza–Klein
ideology), and models with a warp product [5,6] between
these spaces.

On compactifying down to four dimensions, one may
in general get new degrees of freedom added to the SM
spectrum. The new states can be purely from the grav-
itational sector, or have standard model KK excitations
in addition (depending on whether the SM interactions
are written directly in four dimensions, using the induced
metric, or written fully in D dimensions). In any case,
the new states might lead to detectable modifications of
the existing accelerator data and cosmological observa-
tions [9]. The phenomenology of both categories has been
much investigated during the past two years, and we refer
for a summary of the recent findings to [7]. The usual way
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to avoid such new contributions to the prevailing scenario
at low energies is often either by decoupling the particles
by making their masses very heavy (beyond the present
reach of accelerators, say � TeV), or by imposing judi-
cious bounds on their couplings and masses. Recently, it
was suggested [8] that the heavy masses could be real-
ized naturally (without fine-tuning), utilizing only certain
geometrical properties of the internal manifold, namely
that the masses arising from compactification are expo-
nentially large, being related to the volume of the internal
hyperbolic manifold.

In this work we scrutinize the criteria for choosing the
internal manifold, in both the case of tensor and of warp
product compactifications, based on geometrical and topo-
logical arguments, such that the unwanted KK contribu-
tions are avoided. We focus on compact, connected, and
smooth internal manifolds with scalar curvature, bounded
from below κ ≥ (d−1)K, where K is a constant. We con-
sider, for generality, a gravity theory coupled to a Dirac
spinor in the presence of a gauge theory. This considera-
tion has the final aim of being applied to the SM. However,
in order to keep the discussion simple and sufficiently gen-
eral (model independent) we shall not concern ourselves
with finer details like localization mechanisms, the issue
of obtaining chiral fermions starting from odd dimensions,
etc. Instead, after performing the general analysis of var-
ious bounds on the KK masses, one may specialize to the
case of the SM.

Most of our analysis relies on the following basic ob-
servations concerning the spectrum of Riemannian mani-
folds, and the Dirac operator on spin manifolds. The main
fact is that the spectrum ofD/ and that of the Laplacian on
compact Riemmanian manifolds is discrete, bounded from
below, and the eigenvalues (counted with multiplicity) are
ordered: 0 = λ0 ≤ λn ≤ λn+1. Moreover, there exist lower
bounds on λ1 of a Laplacian acting on a scalar in the
compact manifold. In addition, there are upper bounds
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on the eigenvalues which sets a ceiling to how heavy they
can become. These translate into lower bounds on the
four-dimensional tree-level masses of particles arising from
compactification. For spinors, the classic theorem of Lich-
nerowicz enables us to impose similar bounds, upper and
lower, and altogether exclude tree-level massless fermions
for certain internal manifolds. To sum up, we use topologi-
cal considerations to comment on bosonic KK zero modes,
while we use geometrical arguments to impose bounds on
fermions and massive KK modes.

This paper is organized as follows: in Sect. 2, we sum-
marize our conventions and state our requirements for
choosing the internal manifold so that we are able to pro-
duce a phenomenologically reliable scenario in a rather
model-independent way. The implementation of these de-
mands is carried out in the successive sections. In Sect. 3,
we relate the eigenvalues of the Laplacian on the inter-
nal space with the tree-level masses in four dimensions,
and discuss geometrical upper and lower bounds for mas-
sive bosons, and topological conditions for the massless
ones. In Sect. 4, we comment on massless spinors using
the Lichnerowicz theorem, and point out the existence of
curvature-dependent upper and lower bounds on the mas-
sive ones. Demanding the satisfaction of all of our require-
ments stated in the second section, we are able to rule out
certain choices of the compactification manifolds. Finally,
we summarize our conclusions in Sect. 5.

2 Conventions and set-up

As mentioned in the introduction, we consider Einstein’s
gravity coupled to a Dirac spinor and a Yang–Mills gauge
theory on a D-dimensional manifold W =M4 ∪ Y ,

S =
∫
W

dDx
√−g

[
1
G

R +
1
4
F 2 + iψ̄D̂/ Aψ

]

whereM4 is a four-manifold, which we eventually identify
as our four-dimensional world, and Y is a compact (D−4)-
dimensional manifold. D̂/ A is the twisted Dirac operator on
W and F is the YM field strength (for a detailed treat-
ment of an analogous setting in six and ten dimensions,
and for the conventions, we refer to [10]). Consequently,
the various fields on W will be decomposed as follows:
scalars on W will be scalars on both M4 and Y ; a vector
on W will be a vector on M4 and a scalar on Y or vice
versa; the graviton on W will appear as a graviton on M4
and a scalar on Y or vice versa, or as a vector on both
submanifolds. Finally, a spinor on the parent manifold will
decompose as a spinor on both M4 and Y . It is perhaps
worth mentioning that a spinor defined on W which is a
fibre product of M4 and Y does not necessarily split into
spinors defined on the two submanifolds individually, as it
does in the Cartesian tensor product case. However, in the
special case of a warp product, the fibration being trivial,
this decomposition once again holds.

Our analysis includes the tensor product decomposi-
tion (the standard Kaluza–Klein compactification), with

aside comments about it and the warp product [17] de-
composition. Let us recall that for the tensor product,
W = M4 ⊗ Y , the inherited metric is ĝ = g4 + gY where
g4 and gY are the metrics on M4 and Y , respectively.
Whereas for a warp product W = M4 ⊗R+ Y , the resul-
tant inherited metric is of the form ĝ = f2g4 + gY , where
f is a smooth map f : Y → R

+. In this work we choose
the warp factor to be f = e−(1/2)φ as in [6]. The warp fac-
tor is to be consistently determined by solving Einstein’s
equations.

Our main requirements for the theory resulting after
compactification can be outlined as follows:

(1) With respect to the gravity sector, we want to end
up with one massless graviton, no additional massless
gauge bosons, and no massless scalars1.

(2) The zeroth KK mode(s) of the Dirac spinor is mass-
less in four dimensions. If specialized to the SM, this
translates into the requirement that fermion masses
are exclusively due to the Higgs mechanism.

(3) The masses of the KK excitations of various fields are
naturally heavy.

3 Bounds on bosonic KK masses

The starting point of our analysis is the examination of
the masses in the gravity sector. Looking at the linearized
Einstein equations on W 2, ∆̂hk̄l̄ = Tk̄l̄ (the k̄’s are the
indices on W ), one can relate the spectrum of ∆Y with
the tree-level masses of the various fields on M4.

The linearization approach is usually performed as-
suming a weak gravitational field. However, in the spirit
of large radii compactification scenarios, the scalar cur-
vature is expected to be in units of the compactification
radius, and hence of order TeV2. Therefore, neglecting the
curvature may not always be justified. Having said this,
we will here stick to the conventional linearization, this
being the only simple way at hand to deal with gravity.

The parent Laplacian3, ∆̂, decomposes as

∆̂ = ∆4 +∆Y (1)

in the tensor product case, and as
1 Massless vectors may enhance the gauge symmetry, and
gravitational interactions mediated by scalars violate the
equivalence principle

2 We use the linearized equations for obvious reasons; nev-
ertheless, we include for completeness the decomposition of R
on M4 and Y ,

R = R4 + κ

for the tensor product; and for the warp product [17]

R =
1
f2

{R4 − 8f∆f − 6 ‖ ∇f ‖2}+ κ,

where f is the warp factor, which we may assume to be f =
e−(1/2)φ

3 The “hat” superscript refers to quantities defined on W
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∆̂ = eφ(y)∆4 +∆Y − 1
2

(∂lφ(y)) ∂l (2)

in the warp product case (the l’s are the indices on Y ).

3.1 Massless bosons

A necessary condition to meet the first demand (1) is
to select Y with the appropriate Betti numbers4. Since
b0(Y ) = 1 for any general connected manifold Y , we are
guaranteed to end up with one massless graviton on M4.
b1(Y ) = 0 would ensure that no new massless vector
bosons, nor massless scalars are produced inM4 after com-
pactification. However, this is not the case for a general
Y . For example, a circle has b1(S1) = 1 and for a torus,
T d, b1 = d, both of which therefore admit massless 1-
forms. Sd’s are in general suitable ambient spaces for per-
forming such compactifications, since we have b1(Y ) = 0
for d > 1. Other possible alternatives are Calabi–Yau’s,
K3’s, suitable orbifolds of the type T d/Zn, compact hy-
perbolic manifolds for d ≥ 3. In general, for spaces having
b1 
= 0 quotienting by an appropriate discrete isometry of-
ten leaves us with b1 = 0. This topological classification is
insufficient when harmonic spinors are discussed to meet
the demand (2). For in that case, the curvature of the
manifold (a geometric parameter) plays the decisive role.

This analysis of the massless sector applies to both
compactification schemes – tensor or warp.

3.2 Massive bosons: lower bounds

Having considered the massless fields, which are the zero
modes of the Laplacian on the internal space, we now turn
our attention to the first massive excitations. As we men-
tioned in the introduction, there has been an extensive
study of the first non-zero eigenvalue of the Laplacian on
Riemannian manifolds. Rigorous bounds, particularly for
manifolds with scalar curvature bounded from below by
(d − 1)K (where K is constant and d is the dimension
of the manifold), have been established. Anyway, assum-
ing a slowly varying κ makes it possible to replace it by
(d − 1)K in the context of a discussion of mass bounds
and scales. It may be noted that, the eigenspectrum being
strictly ordered, only the lowest massive states are rele-
vant to our analysis, because if we achieve the decoupling
of these, then all the higher modes will automatically be
eliminated in the effective four-dimensional theory.

Let Y be a compact manifold, and λ1 the first non-zero
eigenvalue of ∆Y φn = λnφn, where φn is a scalar. Then
[12]

λ1 + max{−(d− 1)K, 0} ≥ π2

4σ2 , (3)

where σ is the diameter of the manifold. It is worthwhile to
note from (3) that the fundamental parameter for masses

4 The number of zero modes of the Laplacian (or equivalently
the dimension of the space harmonic p-forms) on a compact
manifold Y are given by the pth Betti numbers bp(Y ) of the
manifold

arising from compactification is σ, and not generically the
volume of the manifold, as commonly is thought5. How-
ever, in certain cases one can proceed a step further and
relate σ to the volume of the manifold, and hence rewrite
the bounds in terms of the volume instead (e.g. in Sd and
certain compact hyperbolic manifolds). The inequality (3)
translates effectively into a statement about the bounds
on the four-dimensional masses6 of the lowest excitations,
m2

1. It is obvious that when the Ricci curvature, κ, of Y
is non-negative, then one recovers the standard scenario:
λ1 ≥ π2/(4σ2), where in the standard KK scenario, as in
[2], σ is identified with the diameter of the compactifica-
tion circle(s).

At this point, we note that the explicit expression of
the bounds will depend on the nature of the product be-
tween the two manifolds – a tensor or a warp product.
In the tensor product case, the bound (3) on first scalar
excitations (in the four-dimensional effective theory) will
remain unaltered,

m2
1 ≥ π2

4σ2 − max{−(d− 1)K, 0}.

A natural choice would be σ−1 ∼M∗ (say ∼ O(TeV)).
In the case of κ bounded from below by a negative con-
stant (i.e. not everywhere positive), the bound will in-
volve the infimum of the curvature (or the curvature it-
self, if constant or slowly varying), and in order to achieve
m2

1 � TeV2 we need

κ ≈ |(d− 1)K| �
(
π2

4
− 1

)
TeV2. (4)

It is remarkable that satisfying this bound on the curva-
ture requires no fine-tuning at all7. As was noticed in [8],
some manifolds with negative scalar curvature, like com-
pact hyperbolic ones, may have attractive features like
exponentially large KK masses. We would like to specu-
late that negatively curved internal spaces may also be
favored (beside the string inspired Ricci flat compactifi-
cations), because they support the existence of massless
spinors, as will be shown in the next section.

In the warp product case, it is not as easy to comment
at this level, mainly because the eigenvalue of ∆4, m̃2

1, will
be y-dependent in the D-dimensional theory:

m̃2
1 ≥ e−φ(y)

[
π2

4σ2 − max{−(d− 1)K, 0}

− 1
2

(∂lφ(y)) ∂l

]
, (5)

and therefore one cannot interpret m̃1 as the effective four-
dimensional mass. It is not straightforward to decouple the

5 This can easily be understood by observing that it is possi-
ble to change the spectrum of the Laplacian by deforming the
manifold, and yet keep its volume fixed. However, the relation
between M∗ and MP will always involve the volume of Y

6 Here, and elsewhere, we use the rest frame when referring
to massive states

7 For large extra dimensions models that have anything to
do with string/M-theory, one must have d ≤ 7
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eigenvalue problem for operators in the internal space, be-
cause to start with one cannot “eliminate” the warp factor
by a rescaling of the fields and still maintain desirable fea-
tures like square integrability.

It is clear from (2) that both the warp factor and the
term ∂lφ(y)∂l (which should be understood as the gradi-
ent of the wave function in the internal space) will change
the interpretation of the effective four-dimensional mass.
Thus, within this general framework and without any fur-
ther a priori specifications, one can interpret (5) as a para-
metric expression and use it in an effective field theory,
where integration over all the internal space coordinates
would give a final arithmetic expression for the bounds on
the masses. This conclusion is in contrast with the bounds
on graviton excitations discussed in [8].

Whereas the third demand, of the scalar sector in the
theory8, can be met in the tensor product case (by choos-
ing Y with an appropriate diameter) it seems difficult to
be fulfilled without further model-dependent details, in
the warp product case.

The same arguments can be carried over to the case
of vectors and rank two tensors arising from the gravity
sector, as a consequence of the linearization procedure. In
principle, one could expect curvature-dependent additions
to the equations of motion, as can be read off from (14),
but those additional terms are dropped because they in-
volve O(h2). In this context, we would like to point out
that the vector degrees of freedom, resulting from the met-
ric decomposition, cannot in general be eliminated by a
gauge choice, and their amplitudes of coupling leading
to a typical scattering are comparable to those of gravi-
ton exchange [13]. Hence, it is important to make them
very massive and weakly coupled. On the other hand, the
curvature-dependent terms in (14) will appear in the YM
equations of motion, and it will be difficult to draw con-
clusions9, apart from the special case when d = 2 where
the bounds for the 1-forms are the same as in the case of
scalars [14]. In any case, from (14), it can be argued that
the bounds for these fields are of the same order as in (3).

3.3 Massive bosons: upper bounds

Finally, we would like to add the following remark. Al-
though the first non-zero eigenvalue of ∆ is bounded from
below, it is not possible in general to push it to an in-
finitely heavy scale. There exists an upper bound which
depends on the same parameter σ. For example, if the
Ricci curvature ≥ 0 then the nth eigenvalue (n ∈ Z) is
bounded from above by [15]

λn ≤ 2n2

σ2 d(d+ 4). (6)

And in the case when the Ricci curvature is bounded from
below by a negative number (K < 0), then the upper

8 This bound applies on any massless scalar field in the the-
ory, whether or not in the gravity sector

9 Unfortunately, no rigorous bounds for Laplacians on 1-
forms, relevant to our discussion, have been worked out

bound [15] becomes more complicated; this includes the
(lower bound of) the curvature. For d ≥ 2 the bound is

λn ≤ (2l − 1)2

4
K +

4π2n2

σ2 (1 + 2l−1)2, (7)

for d = 2l, l = 1, 2, ..., and

λn ≤ l2K +
4(1 + π2)n2

σ2 (1 + 22l−2)2, (8)

for d = 2l + 1, l = 1, 2, .... Concerning 1-forms, the same
upper bound holds for λ(1)

1 , because λ(1)
1 ≤ λ1 [14] (with-

out any further assumption concerning the curvature).
In the tensor product case, the bounds (6), (7) and

(8) on the effective four-dimensional masses remain unal-
tered. However, a more careful treatment, as discussed in
Sect. 3.2, is required in the warp product case.

4 Bounds on fermionic KK masses

The Dirac operator on the spin manifold W acting on
spinors is D̂/ = γk̄(X)∂k̄, where the γk̄(X)’s are the D-
dimensional gamma matrices in curved space written in
terms of the Vielbeins on W . It decomposes in the tensor
product case as

D̂/ = D/ 4 +D/ Y , (9)

where D/ Y = γl(y)∂l, D/ 4 = γµ(x)∂µ; γl(y), and γµ(x)
being the gamma matrices of the four- and (D−4)-dimen-
sional spaces, respectively (the µ’s run over M4). In the
warp product case, the D/ splits differently from the one
in (9), and has the form

D̂/ = e(1/2)φ(y)D/ 4 +D/ Y , (10)

where D/ 4 and D/ Y are the same operators as defined pre-
viously. Hence, the four-dimensional fermion masses are
related to the eigenvalues of the Dirac operator on the in-
ternal manifold10. And, in particular, the observed mass-
less fermions in four dimensions are nothing but the zero
modes of D/ Y (which lie in kerD/ Y ). It has been shown by
Lichnerowicz [16] that not all manifolds admit harmonic
(massless) spinors. The argument is based on the relation
between the squared Dirac operator and the scalar curva-
ture,

D/ 2
Y = ∇∗∇ +

1
4
κ, (11)

where κ is the scalar curvature of Y , ∇∗ is the adjoint of
∇, and ∇∗∇ is the connection Laplacian (a positive oper-
ator). We use this theorem not only to identify candidate
manifolds in which the demand (2) can be realized, but
also to set geometrical bounds so that (3) is met.

10 We define the spinor (mass)2 as an eigenvalue of the
squared Dirac operator
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4.1 Massless fermions

Recall that a spinor ψ is said to be harmonic iffD/ ψ = 0, i.e
ψ ∈ kerD/ , It is helpful to remember that kerD/ = kerD/ 2,
and that this space is finite dimensional, [17], and this
space is identified with our space of massless fermions, as
mentioned above. It has been shown in [16] that the ex-
istence of harmonic spinors depend strongly on the scalar
curvature of the manifold, and, in particular, massless
spinors do not exist on manifolds with a positive scalar
curvature11. This no-go theorem applies also to cases
where the scalar curvature is non-negative everywhere,
and not necessarily constant. In addition, the formula (11)
shows that the fermion mass squared is bounded from be-
low by the curvature since the operator ∇∗∇ is positive.

According to the above argument, meeting the second
demand, namely supporting massless spinors (which will
eventually acquire mass only through the Higgs mecha-
nism), rules out the entire class of manifolds with positive
curvature, unless they have further discrete isometries. If
one wants to relax the second demand, by having the
above mass term, then careful attention should be paid
so as not to spoil gauge invariance. For instance, a di-
rect mass term in the action for the SM fermions is not
gauge invariant. So, adding such a tree-level mass term
by hand, and yet keeping gauge invariance, will be at the
cost of doubling (or increasing) the number of degrees of
freedom (and hence the number of SM generations) de-
pending on the dimension of the spinor representation in
the D-dimensional space.

The above price has to be paid anyway, on either neg-
atively or positively curved manifolds, when one goes be-
yond D = 6. It can be shown that D = 6 is the maximum
dimension for which it is possible to end up with a four-
dimensional Weyl spinor (starting from a six-dimensional
Weyl one), without extra degress of freedom. Starting
from an irreducible spin representation of SO(1, D − 1),
and after some algebra, the resulting number of four-
dimensional Weyl spinors is (2(D−5)/2 × n) for D odd (al-
though special care should be taken in order to define
spinors in odd dimensions [17]), and (2D/2−3 × n) for D
even, where n is the number of zero modes of the Dirac
operator in the internal space (on a compact manifold,
the eigenstates are all square integrable). This number n
depends on the coupling of spinors to background fields.
Hence, the number of the zeroth KK fermionic modes will
increase, possibly leading to a variant number of flavors.

A common way to get rid of the above extra spino-
rial degrees of freedom is to use a localization mechanism
as first proposed by [18]. These mechanisms rely on the
existence of more than one zero mode of the Dirac oper-
ator in the internal space, such that at least one of them
is not normalizable. Therefore, a necessary condition for
applying such scenarios is to have a non-compact inter-
nal space, because all the modes of a given Dirac operator
on a compact space are normalizable. Hence, the recently
discussed mechanisms [1,2,19,20] break down for the com-
pact manifold, and extra care is needed for dealing with

11 As an example: massless spinors do not exist on a sphere

the additional modes (specially the zero ones). Finally, we
mention that the arguments contained here, concerning
the zero KK modes, are generic in the sense that they do
not depend on whether the product is tensor or warp.

4.2 Massive fermions: lower bounds

As is the case for the Laplacian, the eigenvalues of the
Dirac operator on a compact space are discrete. There-
fore, the eigenvalues of the squared Dirac operator are
discrete and positive, and in addition any eigenvalue, ν2

q ,
is bounded from below by the curvature [21], including ν2

1 :

ν2
1 ≥ d

4(d− 1)
λ1, (12)

where λ1 is the first eigenvalue of the Yamabe operator,

L ≡ 4(d− 1)
d− 2

∆Y + κ,

with ∆Y being the positive Laplacian acting on func-
tions. The implication of the appearance of the Laplacian
once again in this fermionic context is that there will be
an input from the bosonic spectrum (as transpires from
(12) and (3) above) in setting the bound on the massive
fermionic excitations. Therefore, the bounds on spin 1/2
and spin 0 masses are not totally independent:

ν2
1 ≥ d

d− 2

[
π2

4σ2 − max{−(d− 1)K, 0}
]
+ κ.

So, for positive curvature (K > 0)

ν2
1 ≥

(
d

d− 2

)
π2

4σ2 + κ,

and for negative curvature (K < 0)

ν2
1 ≥ d

d− 2

[
π2

4σ2 + (d− 1)K
]
+ κ.

In the tensor product case, the above bounds read the
same for the four-dimensional masses, the µq’s. Thus, by
choosing σ−1 ∼ O(TeV), we find that it is natural to
achieve µ2

1 ≥ TeV2. In the case κ ≥ 0, all µ2
q � TeV2

without any specific value of the curvature. However, when
κ < 0, the curvature should satisfy an inequality similar
to (4):

κ ≈ |(d− 1)K| �
(
π2d

d− 2
− 1

)
TeV2.

It is again remarkable that µ2
1 � TeV2 can naturally be

achieved having all our mass parameters of the same order
as the compactification mass scale. As can be seen from
the above inequalities, both σ and the curvature explicitly
enter the expressions of the bounds, and hence set the
compactification mass scale.
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4.3 Massive fermions: upper bounds

Again, as for the ∆ eigenmodes, an upper bound on ν2
q

exists, namely

ν2
q ≤ Cq2/d,

where C is a constant that depends only on the geometry
of Y (even in the presence of a gauge field) [22]. Again
here we find restrictions, though not as explicit as in (6),
(7) and (8), which limit our freedom in pushing up the
KK masses arbitrarily high.

All the above observations, concerning both the upper
and lower bounds, have been done in the tensor product
case, though the comments on zero modes apply equally
to both types. However, if the product is warp, then the
bounds and fermion masses will be dressed by the factor
e−φ/2, as seen from (10), and arguments similar to the
ones in Sect. 3.2 apply.

5 Conclusions

We considered, on general grounds, a model of Einstein
gravity coupled to a Dirac spinor and a Yang–Mills gauge
theory on W = M4 ⊗ Y , where Y is a compact inter-
nal manifold with a scalar curvature bounded from below,
and M4 is our four-dimensional world. Both the tensor
product and the warp product are discussed. Bounds and
estimates on the masses of the effective four-dimensional
theory at the classical level have been pointed out. Topo-
logical restrictions in choosing the internal manifold have
been identified in order to avoid having certain bosonic
massless modes in the four-dimensional spectrum. In ad-
dition, an upper bound on the curvature of Y has been
proposed, in the case of non-positive curvature. Geometri-
cal upper and lower bounds have been presented for both
boson and fermion masses. In the tensor product case,
the characteristic compactification mass scale for bosons
is the diameter of the internal manifold, σ−1, along with
|K| when the curvature κ < 0. For fermions, the compact-
ification mass scale is always set by σ and the curvature,
and this is due to an input from the bosonic spectrum in
setting the bound on the massive fermionic excitations.
Therefore, there is an interplay between the spin 1/2 and
spin 0 sectors.

For both fermions and bosons, it turns out that hav-
ing the masses of the lowest excitations � TeV is naturally
achieved by taking all the dimensionful parameters, aris-
ing from compactification, to be ∼ O(TeV) (no fine-tuning
required). In the warp product case, no direct bounds can
be applied for massive states without the knowledge of
both the specific shape of the warp factor and the field
dependence on the internal space, though we are able to
implement general estimates. “Zero-mode” arguments can
be applied to both kinds of products. From the analysis
conducted in this work, we conclude that non-positively
curved internal manifolds with b0 = 1 and b1 = 0 are
strongly favored for phenomenological purposes.

Finally, a comment about non-compact internal man-
ifolds: it has been argued [23] that the spectrum of the
Laplacian on non-compact spaces of finite volume has a
discrete sector. Moreover, it has been shown recently [24]
that a suitable choice of spin structure also leads to a dis-
crete spectrum of the Dirac operator for non-compact hy-
perbolic manifolds of finite volume. One can therefore con-
template analyzing similar bounds for such non-compact
spaces, along the same lines as we have done in this work,
and discuss their phenomenological implications [25].
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Appendix

The expressions of the Laplacian acting on various tensors
have been worked out in [11], and for convenience we list
here the relevant expressions:

∆α = −∇i∇iα = − 1√
g
∂(

√
ggik∂k)α,

(∆α)r = −∇i∇iαr − Rh
rαh, (13)

(∆α)kl = −∇i∇iαkl + Rh
kαhl + Rh

l αkh − 2Rki,lhα
ih,

where i, j, ...,= 1, ..., up to the dimension of the manifold
on which the tensors and Laplacians are defined. Rh

k and
Rki,lh are Ricci and Riemann tensors, respectively.
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